It is interesting to see what is happening in the petroleum industry over time. I won’t get into the political and social aspects of the industry or this will become a 200 page dissertation. What is interesting to me is how the petroleum industry has developed new technologies and uses these technologies in creative ways to gain more value from the resources that are available. Drilling has gone from the simple act of poking a hole in the ground using a tool, to the use of drilling fluids, ‘mud’, to optimize the drilling performance for specific situations, non-vertical directional drilling, where they can actually drill horizontally, and the use of fluids and gases to maximize the extraction of resources through a process called ‘fracking’.

What the petroleum industry has done is looked for and created technologies to extract further value from known resources that would not have been available with the tools that were available to them. We see a similar evolution of the technologies used and value extracted by the communications service providers (CSPs). Looking back, CSPs usually delivered a single service such as voice over a dedicated physical infrastructure. Then, it became important to deliver data services and they added a parallel infrastructure to deliver the video content.

As costs started to become prohibitive to continue to support parallel content delivery models, the CSPs started looking for ways to use the physical infrastructure as the foundation and use other technologies to drive both voice and data to the customer. Frame relay (FR) and asynchronous transfer mode (ATM) technologies were created to allow for the separation of the traffic at a layer 2 (network) perspective. The CSP is extracting more value from their physical infrastructure by delivering multiple services over it.

Then, the Internet came and things changed again. Customers wanted their Internet access in addition to the voice and video services that they currently received. The CSPs evolved, yet again, and started looking at layer 3 (IP) differentiation and laid this technology on their existing FR and ATM networks.

Today, mobile and fixed service providers are discovering that managing the network at the layer 3 level is no longer enough to deliver services to their customers, differentiate their offerings, and most importantly, support the revenue cost model as they continue to build and evolve their networks to new models such as 4G LTE wireless and customer usage patterns change. Voice services are not growing while data services are increasing at an explosive rate. Also, the CSPs are finding that much of their legacy revenue streams are being diverted to over-the-top providers that deliver content from the Internet and do not deliver any revenue or value to the CSP.

There is Value in that Content

The CSPs are moving up the OSI network stack and looking to find value in the layer 4 through 7 content and delivering services that enhance specific types of content and allow subscribers gain additional value through value added services (VAS) that can be targeted towards the subscribers and the content. This means that new technologies such as content inspection and traffic steering are necessary to leverage this function. Unfortunately, there is a non-trivial cost for the capability for the CSP to deliver content and subscriber aware services. These services require significant memory and computing resources.

To offset these costs as well as introduce a more flexible dynamic network infrastructure that is able to adapt to new services and evolving technologies, a consortium of CSPs have developed the Network Functions Virtualization (NFV) technology working group. As I mentioned in a previous blog, NFV is designed to virtualize network functions such as the MME, SBC, SGSN/GGSN, and DPI onto an open hardware infrastructure using commercial, off-the-shelf (COTS) hardware. In addition, VAS solutions can leverage this architecture to enhance the customer experience. By using COTS hardware and using virtual/software versions of these functions, the CSP gains a cost benefit and the network becomes more flexible and dynamic.

It is also important to remember that one of the key components of the NFV standard is to deliver a mechanism to manage and orchestrate all of these virtualized elements while tying the network elements more closely to the business needs of the operator. Since the services are deployed in a flexible and dynamic way, it becomes possible to deliver a mechanism to orchestrate the addition or removal of resources and services based on network analytics and policies. This flexibility allows operators to add and remove services and adjust capacity as needed without the need for additional personnel and time for coordination. An agile infrastructure enables operators to roll-out new services quicker to meet the evolving market demands, and also remove services, which are not contributing to the company’s bottom line or delivering a measurable benefit to the customer quality of experience, with minimal impact the the infrastructure or investment.

Technology to Extract Content and Value

Operators need to consider the four key elements to making the necessary application defined network (ADN) successful in an NFV-based architecture: Virtualization, Abstraction, Programmability, and Orchestration.

  • Virtualization provides the foundation for that flexible infrastructure which allows for the standardization of the hardware layer as well as being one of the key enablers for the dynamic service provisioning.
  • Abstraction is a key element because operators need to be able to tie their network services up into the application and business services they are offering to their customers – enabling their processes and the necessarily orchestration.
  • Programmability of the network elements and the NFV infrastructure ensures that the components being deployed can not only be customized and successfully integrated into the network ecosystem, but adapted as the business needs and technology changes.
  • Orchestration is the last key element. Orchestration is where operators will get some of their largest savings by being able to introduce and remove services quicker and broader through automating the service enablement on their network. This enables operators to adjust quicker to the changing market needs while “doing more with less”.

As these CSPs look to introduce NFV into their architectures, they need to consider these elements and look for vendors which can deliver these attributes. I will discuss each of these features in more detail in upcoming blog posts. We will look at how these features are necessary to deliver the NFV vision and what this means to the CSPs who are looking to leverage the technologies and architectures surrounding the drive towards NFV.

Ultimately, CSPs want a NFV orchestration system enabling the network to add and remove service capacity, on-demand and without human intervention, as the traffic ebbs and flows to those services. This allows the operator to be able to reduce their overall service footprint by re-using infrastructure for different services based upon their needs. F5 is combining these attributes in innovative ways to deliver solutions that enable them to leverage the NFV design.


Demo of F5 utilizing NFV technologies to deliver an agile network architecture: Dynamic Service Availability through VAS bursting

Dynamic Service Availability