A: They’re both more what you’d call “guidelines” than actual rules.

 

image An almost irrefutable fact of application design today is the need for a database, or at a minimum a data store – i.e. a place to store the data generated and manipulated by the application. A second reality is that despite the existence of database access “standards”, no two database solutions support exactly the same syntax and protocols.

Connectivity standards like JDBC and ODBC exist, yes, but like SQL they are variable, resulting in just slightly different enough implementations to effectively cause vendor lock-in at the database layer. You simply can’t take an application developed to use an Oracle database and point it at a Microsoft or IBM database and expect it to work. Life’s like that in the development world. Database connectivity “standards” are a lot like the pirate’s Code, described well by Captain Barbossa in Pirates of the Carribbean as “more what you’d call ‘guidelines’ than actual rules.”

It shouldn’t be a surprise, then, to see the rise of solutions that address this problem, especially in light of an increasing awareness of (in)compatibility at the database layer and its impact on interoperability, particularly as it relates to cloud computing . Forrester Analyst Noel Yuhanna recently penned a report on what is being called Database Compatibility Layers (DCL). The focus of DCL at the moment is on migration across database platforms because, as pointed out by Noel, they’re expensive, time consuming and very costly.

quote-badge

Database migrations have always been complex, time-consuming, and costly due to proprietary data structures and data types, SQL extensions, and procedural languages. It can take up to several months to migrate a database, depending on database size, complexity, and usage of these proprietary features. A new technology has recently emerged for solving this problem: the database compatibility layer, a database access layer that supports another database management system’s (DBMS’s) proprietary extensions natively, allowing existing applications to access the new database transparently.

-- Simpler Database Migrations Have Arrived (Forrester Research Report)

Anecdotally, having been on the implementation end of such a migration I can’t disagree with the assessment. Whether the right answer is to sit down and force some common standards on database connectivity or build a compatibility layer is a debate for another day. Suffice to say that right now the former is unlikely given the penetration and pervasiveness of existing database connectivity, so the latter is probably the most efficient and cost-effective solution. After all, any changes in the core connectivity would require the same level of application modification as a migration; not an inexpensive proposition at all.

According to Forrester a Database Compatibility Layer (DCL) is a “database layer that supports another DBMS’s proprietary SQL extensions, data types, and data structures natively. Existing applications can transparently access the newly migrated database with zero or minimal changes.” By extension, this should also mean that an application could easily access one database and a completely different one using the same code base (assuming zero changes, of course). For the sake of discussion let’s assume that a DCL exists that exhibits just that characteristic – complete interoperability at the connectivity layer. Not just for migration, which is of course the desired use, but for day to day use. What would that mean for cloud computing providers – both internal and external?

ENABLING IT as a SERVICE

Based on our assumption that a DCL exists and is implemented by multiple database solution vendors, a veritable cornucopia of options becomes a lot more available for moving enterprise architectures toward IT as a Service than might be at first obvious.

Consider that applications have variable needs in terms of performance, redundancy, image disaster recovery, and scalability. Some applications require higher performance, others just need a nightly or even weekly backup and some, well, some are just not that important that you can’t use other IT operations backups to restore if something goes wrong. In some cases the applications might have varying needs based on the business unit deploying them. The same application used by finance, for example, might have different requirements than the same one used by developers. How could that be? Because the developers may only be using that application for integration or testing while finance is using it for realz. It happens.

What’s more interesting, however, is how a DCL could enable a more flexible service-oriented style buffet of database choices, especially if the organization used different database solutions to support different transactional, availability, and performance goals.

If a universal DCL (or near universal at least) existed, business stakeholders – together with their IT counterparts – could pick and choose the database “service” they wished to employ based on not only the technical characteristics and operational support but also the costs and business requirements. It would also allow them to “migrate” over time imageas applications became more critical, without requiring a massive investment in upgrading or modifying the application to support a different back-end database.

Obviously I’m picking just a few examples that may or may not be applicable to every organization. The bigger thing here, I think, is the flexibility in architecture and design that is afforded by such a model that balances costs with operational characteristics. Monitoring of database resource availability, too, could be greatly simplified from such a layer, providing solutions that are natively supported by upstream devices responsible for availability at the application layer, which ultimately depends on the database but is often an ignored component because of the complexity currently inherent in supporting such a varied set of connectivity standards.

It should also be obvious that this model would work for a PaaS-style provider who is not tied to any given database technology. A PaaS-style vendor today must either invest effort in developing and maintaining a services layer for database connectivity or restrict customers to a single database service. The latter is fine if you’re creating a single-stack environment such as Microsoft Azure but not so fine if you’re trying to build a more flexible set of offerings to attract a wider customer base. 

Again, same note as above. Providers would have a much more flexible set of options if they could rely upon what is effectively a single database interface regardless of the specific database implementation. More importantly for providers, perhaps, is the migration capability noted by the Forrester report in the first place, as one of the inhibitors of moving existing applications to a cloud computing provider is support for the same database across both enterprise and cloud computing environments.

While services layers are certainly a means to the same end, such layers are not universally supported. There’s no “standard” for them, not even a set of best practice guidelines, and the resulting application code suffers exactly the same issues as with the use of proprietary database connectivity: lock in. You can’t pick one up and move it to the cloud, or another database without changing some code. Granted, a services layer is more efficient in this sense as it serves as an architectural strategic point of control at which connectivity is aggregated and thus database implementation and specifics are abstracted from the application. That means the database can be changed without impacting end-user applications, only the services layer need be modified.

But even that approach is problematic for packaged applications that rely upon database connectivity directly and do not support such service layers. A DCL, ostensibly, would support packaged and custom applications if it were implemented properly in all commercial database offerings.

CONNECTIVITY CARTEL

And therein lies the problem – if it were implemented properly in all commercial database offerings. There is a risk here of a connectivity cartel arising, where database vendors form alliances with other database vendors to support a DCL while “locking out” vendors whom they have decided do not belong.

Because the DCL depends on supporting “proprietary SQL extensions, data types, and data structures natively” there may be a need for database vendors to collaborate as a means to properly support those proprietary features. If collaboration is required, it is possible to deny that collaboration as a means to control who plays in the market. It’s also possible for a vendor to slightly change some proprietary feature in order to “break” the others’ support. And of course the sheer volume of work necessary for a database vendor to support all other database vendors could overwhelm smaller database vendors, leaving them with no real way to support everyone else.

The idea of a DCL is an interesting one, and it has its appeal as a means to forward compatibility for migration – both temporary and permanent. Will it gain in popularity? For the latter, perhaps, but for the former? Less likely. The inherent difficulties and scope of supporting such a wide variety of databases natively will certainly inhibit any such efforts. Solutions such as a REST-ful interface, a la PHP REST SQL or a JSON-HTTP based solution like DBSlayer may be more appropriate in the long run if they were to be standardized.

And by standardized I mean standardized with industry-wide and agreed upon specifications. Not more of the “more what you’d call ‘guidelines’ than actual rules” that we already have.

AddThis Feed Button Bookmark and Share