image It’s interesting to watch the evolution of IT over time. I have repeatedly been told “you people, we were doing that with X, back before you had a name for it!” And likely, the speaker is telling the truth, as far as it goes. Seriously, while the mechanisms may be different, putting a ton of commodity servers behind a load balancer and tweaking for performance looks an awful lot like having LPARs that can shrink and grow. You put “dynamic cloud” into the conversation and the similarities become more pronounced. The biggest difference is how much you’re paying for hardware and licensing.

Back in the day, Enterprise Service Busses (ESB) were all the rage, able to handle communications between a variety of application sources and route things to the correct destination in the correct format, even providing guaranteed delivery if you needed it for transactional services. I trained in several of these tools, most notably IBM MQSeries (now called IBM WebSphere MQ, surprised?) and MS MQ. I was briefed on a ton more during my time at Network Computing. In the end, they’re simply message delivery and routing mechanisms that can translate along the way. Oh sure, with MQSeries Integrator you could include all sorts of other things like security callouts and such, but core functionality was restricted to message flow and delivery.

While ESBs are still used today in highly mixed environments or highly complex application infrastructures, they’re not deployed broadly in IT, largely because XML significantly reduced the need for the translation aspect, which was a primary use of them in the enterprise.

Today, technology is leading us to a parallel development that will likely turn out much more generically useful than ESBs. Since others have referred to it as several things, but the Network Service Bus is the closest I’ve seen in terms of accuracy, I’ll run with that term. This is routing, translation, and delivery across the network from consumer to the correct service. The service is running on a server somewhere, but that’s increasingly less relevant to the consumer application, merely that their request gets serviced is sufficient. Serviced in a timely and efficient manner is big too. Translated while servicing is seeing a temporary (though not short, in my estimation) bump while IPv4 is slowly supplanted by IPv6, but has other uses – like encrypted to unencrypted, for example.

The network of the future will use a few key Strategic Points of Control – like the one between consumers and web servers – to handle routing to a service that is (a) active, (b) responsive, and (c) appropriate to the request. In the interim, while passing the request along, the Strategic point of control will translate the incoming request into a format that the service expects, and if necessary will validate the user in the context of the service being requested and the username/platform/location the request is coming from.

imageThis offloads a lot from your apps and your servers. Encryption can be offloaded to the strategic point of control, freeing up a lot of CPU time, and running unencrypted within your LAN, while maintaining encryption on the public Internet. IPv6 packets can be translated to IPv4 on the way in and back to IPv6 on the way out, so you don’t have to switch everything in your datacenter over to IPv6 at once, security checks can occur before the connection is allowed inside your LAN, and scalability gets a major upgrade because you now have a device in place that will route traffic according to the current back-end configuration. Adding and removing servers, upgrading apps, all benefit from the strategic point of control that allows you to maintain a given public IP while changing the machines that service requests as-needed.

And then we factor in cloud computing. If all of this functionality – or at least a significant chunk of it – was available in the cloud, regardless of cloud vendor, then you could ship overflow traffic to the cloud. There are a lot of issues to deal with, like security, but they’re manageable if you can handle all of the other service requests as if the cloud servers were part of your everyday infrastructure.

That’s a datacenter of the future. Let’s call it a tomato. And in the end it makes your infrastructure more adaptable while giving you a point of control that can harness to implement whatever monitoring or functionality you need. And if you have several of those points of control – one to globally load balance, one for storage, one in front of servers… Then you are offering services that are highly adaptable to fluctuations in usage. Like having a tomato, right in the palm of your hands.

Completely irrelevant observation: The US Bureau of Labor Statistics (BLS) mentioned today that IT unemployment is at 3.3%. Now you have a bright spot in our economic doldrums.